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LElTER TO THE EDITOR 

Retrieval properties of neural networks with 
hierarchical clustering* 

M A Pires Idiart and Alba Theumann 
Institute de Fisica, Universidade Federal do  Rio Crande do SUI, Caira Postal 15051, 
91500 Potto Alegre, RS, Brazil 

Received 11 December 1990 

Abstract. By using the statistical mechanics formulation of Amit, Gutfreund and Som- 
polinsky we investigate the retrieval properties o f a  model for neural networks that exhibits 
the same organization into clusters as Dyson's hierarchical model for ferromagnetism, 
combined with Hebb's learning algorithm for a non-extensive number of stored patterns. 
We show that if the number of clusters I s 4  the model is able to retrieve perfectly a family 
of 'descendants' together with a 'pure' embedded pattern, which appear as local minima 
of the free energy through a series of discontinuous transitions when the temperature 
(mise)  is reduced. The highest critical temperature is for retrieval of the embedded patterns, 
that occur through a second order, continuous transition and remain as the global minima 
of the free energy. The 'descendants' differ from the 'ancestor' i n  the signs of the cluster 
overlaps. However, when the number ofpartitions in clusters increases there appear'blurred' 
solutions, that consist in an arbitrary mixture of 'descendants' o f  a given pattern and may 
hinder the perfect retrieval. The number " ( 1 )  of mixed solutions increases exponentially 
with the ciustet. number, ni i j  = P5!, for large v a i w  o i  i. 

A certain amount of effort has been devoted to the problem of storing and retrieving 
hierarchies of patterns or memories that are organized in ultrametric sequences accord- 
ing to their overlap, and it is a challenge to obtain the best algorithm that optimizes 

orthogonal memories with the same ultrametric organization as the pure states in the 
S K  spin glass [Z], but the performance of this model has been studied only in the case 
of asymmetric bonds by using dynamics [3]. Almost simultaneously Feigelman and 
Ioffe [4] introduced a similar learning algorithm to study the relaxational dynamics 
of a neural network with asymmetric synaptic strength and hierarchically organized 
patternsl A. s!i!! differen! mechanism was adop!ed in !he mode! proposed by Gu!freund 
[5] to store hierarchies of biased patterns with symmetric synaptic strength. A salient 
feature of this model is that it preserves the compactness and simplicity of the learning 
rule, thus allowing for detailed analytical and numerical investigations [SI. An alterna- 
tive approach was followed by Dotsenko [61, who proposed a cluster model where 
the stored patterns are not organized according to their overlaps in ultrametric sequen- 
ces; but they are classified into hierarchies of spin clusters with given magnetizations. 
The intricate learning algorithm prevents us from reaching conclusive results on the 
storage and retrieval properties of the model [7]. 

* Supported in part by Conselho Nacional de Desenvolvimenta Cientifico e Tccnol6gico (CNPq) and 
Financiadora de Estudas c Projetos (FINEP). 
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In a previous publication [ 8 ] ,  hereafter referred to as I, we investigated a com- 
plementary problem, namely: given a neural network model that exhibits a hierarchical 
organization of the neurons (and not of the embedded patterns) into clusters, what 
would be the nature of the retrieved states? The interest in this question is not just 
formal, as it has been pointed out that nested clusters of neural circuits are probably 
present in the cerebral cortex [9]. 

The neural network model we discuss here has the cluster organization of Dyson's 
hierarchical model for ferromagnetism [ 101 combined with Hebb's learning algorithm, 
but we avoid in the following the adjective 'hierarchical' as in the neural network 
terminology this refers specifically to the organization of the embedded patterns, and 
not of the neurons. The symmetric synaptic strengths allow for a straightforward 
investigation of the storage and retrieval capacities of the model by using statistical 
mechanics methods. 

It was shown in I that Dyson's prescription leads to a partition of the N sites of 
a neural network into I = 2' clusters of No neurons each, where r is a finite integer 
and N = IN,, that are a particular realization of the hierarchical partition in cells of 
the sites of a spin-glass proposed by MOzard and Virasoro [Z]. The neurons are 
represented by Ising variables uj = il, i = 1 . . . N, and there are stored p patterns that 
consist in a given configuration of N independent random variables 57, p = 1 . . . p ,  
which take values i1 with equal probability. The hierarchical clusters are organized 
as follows. 

(i) At the first level there is a partition in I = 2' disjoint clusters of No sites each 
and we define the cluster variables: 

No!, 

s : ,= z 57P( I , = l , 2 , 3  ,..., 2' 
N , , ( I , - l ) + l  

together with the interaction energy: 

where E is an arbitrary positive coupling. 
(ii) At the second level every two consecutive clusters are joined into a larger 

cluster of N ,  = 2N0 sites and by  continuing this process we have at the kth level 2'-* 
clusters with Nk = NOZk sites each. The cluster variables are defined recursively by: 

N*'r 

N*(l l - l l+ l  

k = 1,2,. . . , r 

s;, = SG1.21*-, + S L . 2 l k  = z 
I , =  1,2, .  . . , 2'-k 

and at every partition we associate an energy as, in (i) 

The process ends when k =  r and all the sites are contained in a single cluster. The 
total energy is obtained by adding the X(k ) ,  then the equilibrium states are minima 
of the Hamiltonian: 

Z =  %(k)  
k=I  
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that can be written in a more transparent form in terms of a learning rule: 

where sites in a given cluster are fully connected by the synaptic efficacies: 

and { I k }  indicates the sites in the cluster 1,. 
Dyson's hierarchical model [IO] is obtained by setting & ( I k ) =  J2-*, N0=2,  r = 

In N/ln2,  and it simulates a chain of spins with decaying power law interactions 
R-i1+"' , with U = In(g)/ln(2). 

h o r d e r  to apply the method of Amit et a1 [ I l l  we write the Hamiltonian as 

where the subindices a, b = 1,2, .  . . , I run over clusters and the sums: 

are cluster overlaps. It is understood that No+m in the thermodynamic limit while 
/ = N/ No remains finite. The coefficients AOb( I) are the elements of a I x I matrix A 
that turns out to be of Parisi's ultrametric form [ 121 and given by the recursion relation: 

where U(d) is a d-dimensional matrix with all elements equal to unity and A( l )=  I .  
Hopfield's model is recovered for E = 0, Aab(l)  = I .  

For a finite number p of embedded patterns we follow the standard procedure first 
proposed by Amit er a1 [ 111 and we obtain from the Hamiltonian of ( I )  the free energy 
density: 

where the 'temperature' T = p-' is a measure of synaptic noise and m. = {m:], 6; = {Sf), 
p =  I , .  . . , p ,  are p-component vectors. In the following we avoid writing the block 
number 'Pin the matrix elements of A unless explicitly needed for clarity. The quantities 
mr are the thermal averages of the cluster overlaps in (2): 

where we use the notation (. . .)lo, to indicate the configurational average over the 
random variable (f when i belongs to cluster a, The last equality in (5) follows from 
self-averaging as the cluster size NO grows to infinity in the thermodynamic limit. 

The overlaps are determined from the saddle-point equations: 
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and the stability of these solutions is determined by the eigenvalues of the pl- 
dimensional stability matrix with elements: 

Retrieval solutions. The solutions of (6) with perfect retrieval along one of the patterns, 
say w =  1, are of the form m:=6”m, where m. satisfies: 

m.=tanh - E A  mh . [Y, Ob 1 
The simplest solution to (8) occurs when ma aligns along one of the eigenvectors 

17’ of A with eigenvalue A y :  

m: = . . - 7 - “  m o? (e! 

m,=tanh PJ’m, . (10) 

where we impose the normalization U:=+]; then it follows that 

[ :  1 
The eigenvectors and eigenvalues of A(/) were discussed in detail in I and have 

(a) They can be obtained through the recursion relations: 
the following properties. 

I 
‘I = 1,2, . . . , - 

2 
8’ = 1 

with the corresponding eigenvalues: 

( b )  Except for e’(/) and e’(/), all the other eigenvectors fall into degenerate groups 

A , ~ A 2 ~ ~ 3 = A 4 ~ . . . ~ A 1 1 2 + 1  . = A I .  (13) 

( c )  Except for E’(/),  that bas all components equal to unity, all the other 8”(/), 

We represent in figure 1 the eigenvectors for the special case / = 8. 
To take into account the degeneracy in (13), it is convenient to introduce in (10) 

with decreasing eigenvalues: 

y P 2, are eigenvectors of U( I )  in (3) with vanishing eigenvalue. 

!hP no!ZIon: 

/ 
P I  =Jh, 

2 s - 2 s y < p  s = 2 , .  . . , r +  1 
/ =- 

* JA, 

(14) 
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+ + + + + + + +  A I  
YYUYYUUY 

++++- - - -  A ?  

+ + - - + + - -  
++-- - -++ 
+-+-+-+-  
+-+--  
+--++--  + 
+ - -+ -++-  

A ,  = A ,  

+ - + 1 A s =  .... = A 8  

I O  I 
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++--+-+- 
-++--- ++ 

Ib l  

Figure 1. ( a )  We display an each row the components v: = * I  of the eigenvectors of A 
in (13) far I = 8, together with the corresponding degenerate eigenvalue. The top eigenvector 
with A ,  has a perfect alignment with the embedded pattern, while the ‘descendants‘ differ 
in the orientation of the cluster magnetization. ( b )  Examples of a ‘mixed‘ retrieval solution, 
where half the number of clusters aligns with a vector of the second group ( A , )  and the 
other half with a vector of the third group ( A 5 ) .  

The non-trivial solutions to (lo), together with the positiveness condition on the 
eigenvalues of (7) show that as the temperature decreases the system undergoes the 
following series of ordering transitions [ 8 ] :  

(i) p<p, ,  m,=O for all y (paramagnetic phase) 
(ii) p I s p < p . ,  s = 2 , 3  , _ _ _ ,  r. 
The system of equations (10) accepts a solution 

m,#O m,=O for y 3 2. 

This is a continuous transition with m, growing continuously from zero as m, = 

(iii) p 
We show in I that (10) accepts other non-trivial solutions but the transition cannot 

be continuous because one has to keep positive the lowest eigenvalue of the stability 
matrix in (7). Each group of ‘descendants’ eigenvectors with 2”-2+ 1 s y S  2’-’ orders 
at p = p: > p, with a discontinuity my = m: in the order parameter given by the joint 
solution of the equations: 

( P I P I  - 1)1’2. 
p., s = 2, . . . , r. 



L654 Letter to the Editor 

At any finite temperature these solutions are local minima of the free energy, as 
we obtain from (41, (9) and (10) that at the saddle point the free energy density can 
be written: 

where g(x) is a monotonous increasing function, then we will have F, < F2 <. . , < F,, 
with the solution m, f 0 being the global minimum. At zero temperature we obtain 
from (8) and (4): 

where the sum on the right-hand side satisfies the inequality: 

The equals sign in (18) applies only to the retrieval solution m: in (9), that gives: 

1: Aahmll =IAv'J:l = A ,  (19) 

from where it follows, together with (17), that E ,  < E, <. . .< E,. 
We conclude that the 'true retrieval' solutions with y = 1 and v: = 1, that align 

perfectly with the embedded patterns give at all values of p 2 the global minima of 
the free energy. However, the other solutions in (9) with y 2 2 that form a 'family of 
descendants' that differ in the relative signs of the cluster overlaps, as shown in figure 
l (a) ,  will be local minima and possible attractors in a relaxational process. 

Non-aligned retrieval solutions. Equation ( 8 )  also accepts the mixed solution: 

where the vectors B y ( 1 / 2 )  are eigenvectors of U(1/2) with vanishing eigenvalue and 
from (3): 

m, = tan( p J T  (i) m,] 

m , . = t a n h [ p J F ( i )  m,.]. 

We fix arbitrarily A , > A , , ,  then m y >  m,,. We show in figure l ( b )  two examples of 
'mixed' solutions for I = 8. 

For these solutions the stability matrix in (7) becomes: 

PJ M\$k= Anh --E A.,[l -(mz'')2]A,b 
I ,  

and can be brought into block diagonal form by means of a unitary transformation: 

1 I n , l h v h  n = An,A?,n (23) 
0.h 
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where the matrix A: 
r 

A =  
0 

w4 U 4  

0 4  0 4  

0 

has the non-vanishing matrix elements: 

A , , , , = ~ . ~ = l - ~ [ l -  m:+ m:. ] 
P . 7  
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(24) 

q ' = 2 S - 1  q = 2 S  or v '=26 q = Z S - I  

2 " - 2 +  1 c < 2s-1 

q = l  for s = 1. 

for s = 2 , 3 , .  . . , r 

According to (23), as ,4,,30, i t  is a sufficient condition for the stability of the 
solutions in (20) that they should keep positive the eigenvalues of A: 

A T - L  I - z ( ~ I + ~ 2 ) ~ f { ( ~ I  - d + 4 ~ 1 z ~ 2 1 } 1 ' 2  

P 
P3 

P 
P s  

A;= 1 - - ( I  - m ? , )  

AT= 1 -- ( 1  - m:) 

with A;<AT<A;<AT< ... . 
To impose the condition of a non-trivial solution to both equations (21) together 

with the positiveness of the lowest eigenvalue A; in (26), provides us with three 
equations for m f ,  m;, and the critical pf , .  for the discontinuous transition. 

For these solutions the inequality sign in (18 )  is valid, which indicates imperfect 
alignment. From (ZO), (4) and the recursion relation for the eigenvalues in (12). there 
follows the expression for the free energy: 

1 1 
- F,JP ) = N (27) 

Numerical results for T$ as a function of the parameter E in (12) are shown by 
the broken curve in figure 2, for I = 8, s = 3, s ' =  4, and y. y' as in (14). The full curves 
represent the critical temperatures TT (upper) and T: (lower) for the retrieval solutions 
in (15). 

( F,(P ) + W P  )). 
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E 

Figure 2. Numerical results for the critical T;, (broken line) of the ‘mixed‘ solution in 
figure I(b) as a function of the interaction strength E in (3). The full curves represent the 
critical temperatures Tf (upper) and T,* (lower) for the retrieval of the ‘descendants’ in 
( IS) .  We fixed the scale I / J A , = f i , = l .  

We observe that the critical TT4 is slightly higher but almost indistinguishable from 
T: .  then the ‘mixed’ solution would order approximately at the same temperature as 
the lowest ‘pure’ solution with a lower free energy, as we get from (27): F,< F,4< F4. 
This seems to be an indication that, if the number of ‘imperfect’ solutions is sufficiently 
large, the retrieval properties of the model may be severely affected because the ‘mixed‘ 
minima will be more attractive than one of the ‘pure’ components. 

To estimate the number of ‘mixed’ solutions we observe that the choice in (20)  
does not exploit all the possibilities, and we may also have as solutions of (8): 

where the (1/4)-dimensionaI vectors 6’(1/4) are eigenvectors of U(1/4) with vanishing 
eigenvalue. This partition process can be continued and in general after s steps we 
will have a solution in terms of 2” eigenvectors 67(1 /2 ’ )  of U(1/2’) with vanishing 
eigenvalue, for s = 1,2, . . . , r, I = 2‘. 

We call N(1)  the number of vectors * ( I )  that satisfy: 

U( I) ri( I) = 0 (29) 

and that are not the eigenvectors in (11). The vectors *(I) can be obtained through 
the recursion relations 

where r i ‘ (1/2) satisfies the same condition as in (29) with 1 replaced by 112. Then with 
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each pair of (1/2)-dimensional vectors we can build two I-dimensional ones, and to 
this we must add 

that satisfies (29) but is not in the form of (30). Among all the * ( I )  built in this way 
we will obtain also the (1-1) eigenvectors that satisfy (29); then we get: 

2 

N(I)+(I -1)=2[  N ( f )  +(;-I)] + 1  

with N(1) = 0. The recursion relation in (32) gives N(2) = N(4) = 0, N ( 8 )  = 12 and 
for large values of I has the asymptotic behaviour: 

N (  1 )  z - 1 (33) 

thus growing exponentially with the number of clusters. We conclude that the present 
model with hierarchical clustering has excellent retrieval properties for one embedded 
pattern and a ‘family of descendants’ that vary in the relative sign of the cluster 
overlaps, if the number of clusters is kept relatively small ( I  < 8). 

When the number of partitions increases, there appear an exponentially large 
number of ‘blurred‘, unwanted solutions that are not aligned with the embedded 
patterns or its ‘pure’ descendants. These mixed solutions would have a lower free 
energy than those corresponding to full alignment of the pure component with lowest 
eigenvalue, thus acting as more effective attractors in a relaxational process and 
preventing perfect’retrieval. 

To conclude, we present in this work a neural network model where some notion 
of ‘nearness’ is defined, in such a way that we can speak about the hierarchical 
organization of the neurons in clusters. Explicit calculations show that for each 
embedded pattern the system retrieves not only the pattern itself but also a family of 
descendants. Although our model is reminiscent of cluster models studied in the past 
[6,9], it is far more tractable and allows for a detailed investigation of its storing and 
retrieving capacities, hence the results we present here go beyond the information 
presented in previous papers. 

The saturation properties of the model will be analysed in a forthcoming publication. 
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